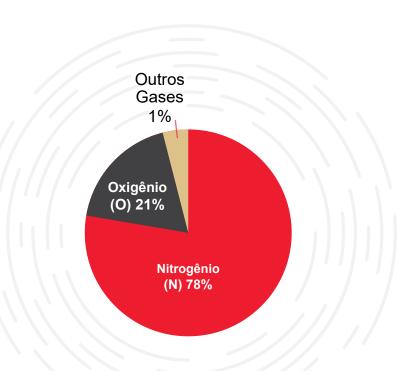


CP TRATAMENTO DE AR

Com mais de 120 anos no mercado, a Chicago Pneumatic é uma empresa que serve aos mais diversos setores industriais com uma ampla gama de produtos no setor de ar comprimido.

Este catálogo tem como finalidade apresentar o nosso completo portifólio de produtos que irão te ajudar na sua performance produtiva por meio de processos de tratamento de ar.



Sobre o ar

O ar que conhecemos e que está presente na atmosfera de nosso planeta consiste na mistura de vários gases, dentre eles os principais são **nitrogênio**, **oxigênio** e uma quantidade de vapor de água.


O ar também contém pequenas quantidades de gás inerte e, infelizmente, muita poluição na forma de hidrocarboneto produzido pelo homem.

Compressão do ar e contaminação

Por meio do trabalho do compressor de ar, o ar atmosférico tem seu volume reduzido de forma que a sua pressão aumente assim como sua temperatura, transformando o ar em fonte de energia.

Quando esse processo ocorre, embora o ar tenha o seu volume reduzido, os contaminantes presentes no ar gerado pelo compressor aumentam em 8 vezes a sua concentração em relação à situação inicial do ar, antes dele passar pelo processo de compressão.

Concentração de contaminantes aumenta 8 vezes em relação à situação inicial.

1 m³ de ar ambiente a 7 bar(e)
Mais de 1,4 bilhões de partículas por m³

Qualidade de ar

A extração de energia do ar comprimido é vantajosa em muitos aspectos. Em primeiro lugar, como fonte de energia, o ar comprimido é flexível, versátil, e além disso, relativamente seguro, quando comparado a outros meios de armazenamento de energia, como vapor ou bateria.

Como falado anteriormente, o ar comprimido possui contaminantes que podem atrapalhar nas demandas de setores como farmacêutico, industrial e alimentício, a utilização em alta qualidade, isto é, sem a presença de sujeiras, umidade ou condensados, permite que que as demandas dessas e outras indústrias sejam atendidas e tenham seus resultados atingidos.

O tratamento do ar comprimido é importante para a sua qualidade, possibilitando que, ao entrar em contato com outros produtos, não seja nocivo ou case danos a peças e equipamentos durante sua funcionalidade.

Benefícios do tratamento de ar

1. Segurança completa

A instalação de equipamentos para tratamento do ar comprimido tem vários benefícios e lhe garante uma maior segurança:

- Proteção da sua rede de ar comprimido
- Proteção dos equipamentos que utilizam o ar comprimido
- Maior qualidade do seu produto final.

2. Melhora a produtividade

- A instalação de um vaso pode ajudar a sua operação a não ter paradas constantes por falta de ar em sua instalação
- Redução do tempo de parada dos equipamentos que utilizam ar comprimido
- Reduz o índice de refugo dos seus produtos
- Reduz o índice de 're-trabalho' dos seus produtos.

3. Menos manutenção

- Com uma melhor qualidade do seu ar comprimido, os equipamentos que estão utilizando esse ar terão uma vida útil maior, reduzindo a necessidade de intervenções
- Melhor aproveitamento do time de manutenção para outras atividades.

4. Redução de custos

O dimensionamento adequado de reservatórios para sua operação, pode ajudar a diminuir a banda de pressão dos seus compressores, e isso se traduz em custo pois cada 1 bar reduzido na pressão de trabalho do seu compressor equivale a 7% de redução na sua conta de energia.

Drenos automáticos

Elimine a contaminação líquida

Os drenos automáticos de condensado - LD, controlam eletronicamente a drenagem dos condensados, através de chip de memória inteligente que registra todos os eventos de trabalho e ciclos de drenagem.

Este dreno descarrega apenas água garantindo uma drenagem de qualidade sem desperdícios de ar comprimido.

	Vazão	Aplic	c. em cond. Moderada				Condições lim	nites de trabalho		
MODELO	Máxima	Compr.	Sec.	Filtros	Peso	Press	ão (bar)	Tempera	tura (°C)	
	l/h	m³/h	m³/h	m³/h	kg	Mín.	Máx.	Mín.	Máx.	
	8,1	900	1800	9000	0,7					
LD	16,1	1800	3600	18000	1,2	0.2	16	1	60	
	85	9500	19000	95000	2,8					
TD	-	-	-	-		0	16	1	50	
MD	360	5400	-	-	0,9	0	16	1	60	

FILTROS

Filtros para ar comprimido

Pode ser utilizado em qualquer aplicação que utiliza ar comprimido.

- · Função de remover o particulado sólido que se encontra em suspensão no ar comprimido
- Auxilia na remoção do condensado em estado líquido
- Realiza uma separação preliminar e remove o condensando.

Além disso, a instalação de um filtro de ar comprimido pode evitar os seguintes riscos:

- Avarias em equipamentos geralmente caros (corrosão de componentes metálicos, entupimento de válvulas e de tubagens, etc.)
- A contaminação dos produtos (especialmente nas indústrias agroalimentar, farmacêutica, e médica.)
- A diminuição do desempenho e/ou tempo de vida útil dos equipamentos do sistema de tratamento de ar
- Evita que partículas estranhas entrem no sistema e interrompam o fluxo de ar.

Principais benefícios

Maior qualidade do ar comprimido

filtra os contaminantes presentes

Protege os equipamentos

evita a corrosão de equipamentos metálicos, entupimento de válvulas de tubagens, etc.

Melhoria de desempenho

do seu compressor

Mais qualidade

do produto final

Modelos

Filtro coalescente

O filtro coalescente é responsável pela purificação do ar comprimido, através da eliminação das impurezas e da umidade do ar. Retenção de óleo no estado líquido (aerossol) e água.

Filtro de partículas

O filtro de partículas, como o nome mesmo já revela, é responsável por filtrar as partículas que restaram do ar comprimido, deixando-o mais limpo.

Filtro de carvão ativado

Mesma funcionalidade do filtro coalescente, com a diferença que o filtro de carvão ativado é voltado para o óleo no estado gasoso (hidrocarboneto).

Tipos de filtros disponíveis

	B			3		
	Р	G	S	С	D	V
Tipo	CO	CO	PA	CO	PA	CA
Remoção de partículas (µm)	≥ 5	≥ 1	≥ 1	≥ 0.01	≥ 0.01	-
Arraste máximo de óleo (mg/m³)**	1	0.3	-	0.01	-	0.003
Classe de qualidade do ar para partículas*	4	(3)	3	(1)	1	-
Classe de qualidade do ar para óleo*	3	3	-	2	-	1
Tipo do dreno	AT	AT	MA	AT	MA	MA

CO = Coalescente | PA = Partículas | CA = Carvão ------ AT = Automático(Mecânico) | MA = Manual

Como atender aos requisitos com produtos CP

PARTÍCULAS

CLASSE DE PUREZA	NÚ	PARTÍCULAS SÓLIDAS IMERO DE PARTÍCULAS POR	M²	Filtro P	Filtro S	Filtro S + D
	0.1 < d ≤ 0.5 µm**	0.5 < d ≤ 1.0 μm**	1.0 < d ≤ 5.0 μm**		, J	3 · D
0	SOB DEMANDA DO	CLIENTE MAIS RESTRI	TO QUE A CLASSE 1			
1	≤ 20.000	≤ 400	≤ 10			
2	≤ 400.000	≤ 6.000	≤ 100			
3	-	-	≤ 1.000			
4	-	-	≤ 10.000			
5	-	-	≤ 100.000			
6		≤ 5 mg/m³				

^{*} Líquido, Aerossol e Vapor

^{**} d = diâmetro da partícula

ÁGUA

CLASSE DE PUREZA		gua DP	Secador COOL	Secador CPX	Secador por adsorção
	°C	°F	COOL	OFA	ausorção
0					
1	≤ -70	≤ - 94			
2	≤ - 40	≤ - 40			
3	≤ -20	≤ - 4			
4	≤ 3	≤ 37.4			
5	≤ 7	≤ 44.6			
6	≤ 10	≤ 50			

^{*} Líquido, Aerossol e Vapor ** d = diâmetro da partícula

ÓLEO

CLASSE DE PUREZA	Óleo* Concentração mg/m³	Filtro P	Filtro S	Filtro S + D	Filtro G + C + Filtro V
0					
1	≤ 0.01				
2	≤ 0.1				
3	≤ 1				
4	≤ 5				
5	-				
6	-				

^{*} Líquido, Aerossol e Vapor

Nossos filtros seguem a norma padrão ISO 8573-1:2010 comprovando a eficiência e diferenciação no mercado.

^{**} d = diâmetro da partícula

Consagrada tecnologia CP, ainda melhor na nova geração de filtros

Design otimizado

- Design de elemento filtrante inovador
- Características de fluxo de ar melhoradas
- Consumo de energia reduzido
- Custo de propriedade reduzido

Ótimo desempenho

- Excepcional redução de aerossóis e partículas
- Queda de pressão extremamente baixa (< 125 mbar)
- Temperatura operacional de até 120°C
- Pressão operacional de até 20.7 bar

Manutenção otimizada

- Marcação para fixar o copo no cabeçote
- Elemento filtrante de fácil remoção
- Design hexagonal para fácil aderência
- Dreno externo acessível

Informações importantes

Aqui estão algumas informações interessantes para te ajudar a escolher a linha de filtros ideal para o seu sistema de ar comprimido:

- Dependendo da aplicação, cada ponto de uso do sistema pode exigir uma qualidade de ar comprimido diferente.
- Certifique-se de que o equipamento de purificação escolhido realmente forneça a pureza do ar necessária de acordo com os padrões ISO 8573-1:2010.
- 3. Ao comparar os filtros entre si, verifique se eles foram testados de acordo com os padrões ISO 8573 e ISO 12500.
- Sempre que você comparar diferentes soluções de filtragem, é crucial ter em mente que o desempenho do filtro é altamente dependente das condições de entrada.
- Ao levar em consideração o custo operacional dos filtros de coalescência de óleo, certifique-se de comparar a perda de pressão úmida saturada inicial. A perda de pressão seca não é uma métrica representativa para desempenho.
- Por outro lado, para filtros de poeira, pode-se esperar que a queda de pressão aumente com o tempo. Uma baixa queda de pressão inicial não significa que ela permanecerá assim durante toda a vida útil do elemento filtrante.

Acessórios

Indicadores de pressão

Indicador de pressão

Manômetro

Manômetro com contato

Drenos

Dreno manual com adaptador

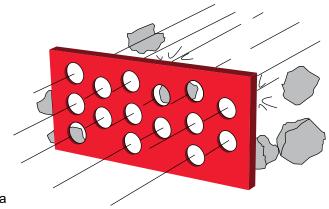
Dreno automático com adaptador

Dreno controlado por nível

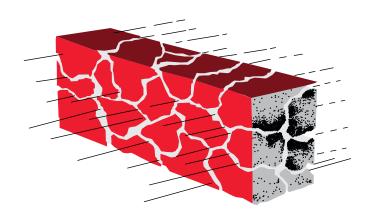
Kits de instalação

Kits de conexão e montagem em parede

Detalhes do elemento filtrante



Filtragem do ar comprimido


FILTRAGEM SUPERFICIAL

A filtragem superficial atua como uma peneira. Partículas maiores do que os orifícios no elemento do filtro grudam na superfície enquanto as partículas menores passam. Ao ajustar o buraco do material do filtro, pode-se determinar a capacidade do filtro de separar as partículas até um determinado tamanho.

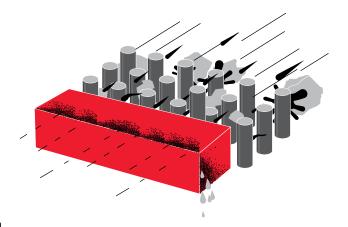
Quando o orifício do filtro está estupido, a pressão cai e o elemento filtrante deve ser limpo ou substituído. O material na filtragem superficial deve ser fibra de celulose, polietileno ou metal sinterizado.

A filtragem superficial separa as partículas

Filtros de carvão removem vapor de óleo e água

FILTRAGEM COM CARVÃO ATIVADO

Ao filtrar através de um leito de carvão ativo, tanto os vapores de óleo quanto certos gases são absorvidos. O ar comprimido é, portanto, sem cheiro e insípido.


Normalmente, o carbono ativo em um elemento filtrante absorve o óleo em aproximadamente 15% da quantidade de peso do carbono antes de ficar saturado. Quando o carbono está saturado, o elemento filtrante é substituído.

Este tipo de filtro deve sempre estar precedido por um filtro de filtragem profundo que separará eventuais gotas de óleo. O ar comprimido deve ser seco por filtragem ao ar através de carvão ativo.

FILTRAGEM PROFUNDA

A filtração profunda separa o óleo e as partículas do ar comprimido através de um filtro de fibras de vidro. As gotas de óleo ficam presas nas fibras, o óleo é pressionado através delas e eventualmente drenado por meio de uma válvula de drenagem na parte inferior da carcaça do filtro.

As partículas sólidas ficam presas entre as fibras. Quando o material do filtro estiver saturado pela poluição, a pressão no filtro cai e o elemento filtrante deve ser substituído. O filtro separa o óleo de forma mais eficiente quando a pressão do ar tem uma temperatura baixa (+20°C ou menos) e quando a velocidade do ar através do filtro está correta.

A filtragem em nível mais profundo remove óleo e partículas

CPWS 10 - 2550

CPWS Separador de condensado

O ar comprimido quando sai do compressor de ar contém gotículas de água que danificam sua rede/equipamentos, caso não exista nenhuma barreira para remoção dessas gotículas. O separador é uma das barreiras que podem ser utilizadas para evitar esse tipo de prejuízo.

Os benefícios do CPWS

Ar sem condensado

- Retém e elimina o condensado de maneira automática e segura
- Melhora a performance dos equipamentos do tratamento do ar
- Evita problemas de parada de linha

Benefícios ao usuário

Instalação simples

- Utiliza a mesma carcaça do filtro, possibilitando montagem conjunta com o mesmo
- Leve
- Ocupa pouco espaço da sua instalação

Confiabilidade

- Componentes de alta qualidade testados sob condições extremas de trabalho
- · Livre de manutenção

Especificações técnicas

		Va	zão	Peso			Condições lir	nite de trabalho			
	Con. E. / S.	Va	7240	F 650	Press	ão (bar)	Temp	. amb (°C)	Temp. ad	n. Ar (°C)	Efic.
MODELO	(BSP)	m³/h	PCM	kg	Min.	Max.	Min.	Max.	Min.	Max.	
CPWS 10	1/8	10	6	0,25							
CPWS 24	1/4	25	14,6	0,25							
CPWS 42	1/4	42	25	0,6							
CPWS 59	3/8	59	35	0,6							
CPWS 85	1/2	85	50	0,6							
CPWS 119	1/2	119	70	1,7							
CPWS 212	3/4	212	125	1,7	1,5	16	-20	50	1	80	99%
CPWS 297	1	297	175	1,7							
CPWS 476	1 1/4	476	280	3							
CPWS 545	1 1/2	545	321	3							
CPWS 1189	2	1189	700	4,9							
CPWS 1444	2 1/2	1444	850	8							
CPWS 2550	3	2549	1500,6	8							

RESERVATÓRIO

Reservatório de ar

Pode ser utilizado em qualquer aplicação que utiliza ar comprimido.

- Função de armazenamento para lidar com alto consumo de ar
- Estabiliza picos de pressão e fornece um fluxo de ar estável
- Realiza uma separação preliminar e remove o condensando.

Além disso, a instação de um reservatório de ar pode **evitar** os seguintes **riscos**:

- · Picos de pressão instáveis
- · Paradas de funcionamento inesperadas do compressor de ar
- Mais risco de condensado.

Principais benefícios

Estabilização da pressão

ótimo para as ferramentas pneumáticas que usam ar comprimido

Reserva de ar

para lidar com demandas acima da vazão instantânea gerada por seus compressores

Redução de pulsação Redução de velocidade Redução de temperatura

Melhoria

da vida, confiabilidade e funcionalidade do seu compressor

Separação de condensado

Modelo

Reservatórios pintados

Todos os nossos reservatórios são pintados externamente. Essa proteção garante ao vaso maior resistência contra corrosão na superfície externa do vaso. Para aplicações onde a necessidade de uma pureza maior do ar comprimido ou do oxigênio, temos a opção de vasos com proteção interna, assim você garante a qualidade do seu produto final.

Capacidade do Reservatório

Como escolher o tamanho do meu reservatório de ar?

Não existe uma regra que sirva para todos, pois algumas aplicações exigem tanques de ar maiores devido ao processo.

No entanto, duas regras práticas ajudar a escolher:

- A capacidade do seu reservatório de ar deve ser de pelo menos 1/4 da sua vazão de ar livre expressa em m³/min.
- Se baseie na potência do motor do compressor e calcule a capacidade:

Volume(m^3) = 6 x vazão (l/s)

Exemplo: Se você instalar um compressor parafuso de 10 hp, a capacidade do seu receptor deve ser de no mínimo 300 litros.

O dimensionamento correto do seu reservatório de ar traz os seguintes benefícios para a sua operação:

- Menos desperdício durante o período de descarga
- · Operação mais leve de modo geral
- Evita estresse mecânico em vários componentes.

Todos os reservatórios acompanham:

- Manômetro
- Válvula de segurança
- Kit de conexão para montagem dos instrumentos no vaso
- Válvulas de esfera

Kit de Conexão

Especificações técnicas

Separador de condensado (com proteção externa)

		(1)			Con	exão		D: 1		Dime	ensão
MODELO	Pressão	o (bar)	Volume	Entra	ada	Saío	la	Pintura	Peso		im)
	Operação	PMTA	L	Tipo	Ø	Tipo	Ø	Int. Ex	kt. kg	Ø	Alt.
SC 265	14	14	265						85	500	1.640
SC 475	14	14	475		2"		2"		141	600	1.870
SC 10	10 14	11 14	1.000	ML - BSP	2	ML - BSP			326 417	760	2.770
SC 15	10 14	11 14	1.500	ML - BSP	011	ML - BSP	0.11		579 665	940	2.616
SC 20	10 14	11 14	2.000		3"		3"		689 806	940	3.346
SC 30	10 14	11 14	3.000		411		49	2 / Z	1046	1.265	2.838
SC 40	10 14	11 14	4.000		4"		4"		1255	1.265	3.646
SC 50	10 14	11 14	5.000					N/A his	1470 1695	1.265	4.448
SC 60	10 14	11 14	6.000	Flamma		Florens		-	1924	1.575	3.718
SC 80	10 14	11 14	8.000	Flange	C"	Flange	C"		2307 2944	1.575	4.750
SC 100	10 14	11 14	10.000		6"		6"		2678 3452	1.575	5.749
SC 120	10 14	11 14	12.000						3069 3965	1.575	6.802
SC 150	10 14	11 14	15.000						3650 4741	1.575	8.358

Ar Medicinal (com proteção interna e externa)

	Dragaão	(hor)	Volume		Cone	exão		Dis	ntura	Peso	Dime	ensão
MODELO	Pressão	(bai)	volume	Entra	ada	Saío	da	FII	ilura	resu	(m	nm)
	Operação	PMTA	L	Tipo	Ø	Tipo	Ø	Int.	Ext.	kg	Ø	Alt.
AR 265	14	14	265							85	500	1.640
AR 475	14	14	475					τč	4/10	141	600	1.870
AR 05	10 14	11 14	500		2"		2"	ell N	,5 PB 4	255	810	1.420
AR 10	10 14	11 14	1.000	ML - BSP		ML - BSP		- Munsell	Munsell 2,	326 417	760	2.770
AR 15	10 14	11 14	1.500		3"		3"	Branco	zul - Mu	579 665	940	2.616
AR 20	10 14	11 14	2.000		3		3	Δ.	Azı	689 806	940	3.346

Nitrogênio (com proteção externa)


	D	/h - "	\/-		Con	exão		Dia	4	D	Dime	ensão
MODELO	Pressão	(bar)	Volume	Entra	da	Saíd	а	Pin	tura	Peso		m)
	Operação	PMTA	L	Tipo	Ø	Tipo	Ø	Int.	Ext.	kg	Ø	Alt.
N 265	14	14	265							85	500	1.640
N 475	14	14	475							141	600	1.870
	10	11								255	810	1.420
N 05	14	14	500		2"		2"			200	007	4.500
	30	32,2			2					306	807	1.590
	10	11								326	760	2 770
N 10	14	14	1.000	ML - BSP		ML - BSP				417	760	2.770
	30	32,2		WIE BOI		WE BOI				578	807	2.590
	10	11								579	940	2.616
N 15	14	14	1.500							665	940	1.790
	30	32,2			3"		3"			790	807	3.530
	10	11			3		3			689	940	3.346
N 20	14	14	2.000							806	340	0.040
	30	32,2								1055	807	4.470
	10	11								1046	1.265	2.838
N 30	14	14	3.000						3,5	1196		
	30	32,3			4"		4"		Branco - Munsell N 9,5	1665	1.071	4.005
	10	11			-		-		sell	1255	1.265	3.346
N 40	14	14	4.000					Ϋ́	Jun	1442		
	30	32,3						_	_	1995	1.071	5.135
	10	11							DCO	1470	1.265	4.448
N 50	14	14	5.000						Bra	1695	1.265	3.500
	30	32,3								2415	1.071	6.265
N CO	10	11	0.000							1924	1.575	3.718
N 60	14	14	6.000							2435	1.575	2.470
	30 10	32,3 11		Flange		Flange				2775 2307	1.071 1.575	7.400
N 80	10 14	14	8.000							230 <i>1</i> 2944	1.575	4.750 3.500
N OU	30	32,3	0.000							3665	1.610	4.800
	10	32,3 11			6"		6"			2678	1.575	5.749
N 100	14	14	10.000							3452	1.575	4.500
14 100	30	32,2	10.000							4425	1.610	5.805
	10	11								3069		
N 120	14	14	12.000							3965	1.575	6.802
	30	32,2								5190	1.610	6.800
	10	11								3650	1.575	8.358
N 150	14	14	15.000							4741	1.575	7.100
	30	32,2								6280	1.610	8.240

Oxigênio (com proteção interna e externa)

	D	(l)	\ / - I	Conexão				Div	4	D	Dime	ensão
MODELO	Pressão	(par)	Volume	Entra	ada	Saío	da	Pin	tura	Peso		m)
	Operação	PMTA	L	Tipo	Ø	Tipo	Ø	Int.	Ext.	kg	Ø	Alt.
O 265	14	14	265						·	85	500	1.640
O 475	14	14	475							141	600	1.870
O 05	10 14	11 14	500		2"		2"			255	810	1.420
O 10	10 14	11 14	1.000	ML - BSP		ML - BSP				326 417	760	2.770
O 15	10 14	11 14	1.500		3"		3"			579 665	940	2.616
O 20	10 14	11 14	2.000		3		3	9,5	9,5	689 806	940	3.346
O 30	10 14	11 14	3.000		4"		4"	ell N 9	e N	1046 1196	1.265	2.838
O 40	10 14	11 14	4.000		4		4	- Muns	- Muns	1255 1442	1.265	3.646
O 50	10 14	11 14	5.000					Branco - Munsell N	Branco - Munsell N	1470 1695	1.265	4.448
O 60	10 14	11 14	6.000	Flance		Florida		Δ.	Δ	1924 2435	1.575	3.718
O 80	10 14	11 14	8.000	Flange	6"	Flange	6"			2307 2944	1.575	4.750
O 100	10 14	11 14	10.000		0		O			2678 3452	1.575	5.749
O 120	10 14	11 14	12.000							3069 3965	1.575	6.802
O 150	10 14	11 14	15.000							3650 4741	1.575	8.358

Isento de Óleo (com proteção interna e externa)

	Droopão	(har)	Volume		Cone	exão		Div	ntura	Peso	Dime	ensão
MODELO	Pressão	o (bai)	volume	Entra	ada	Saío	da	FII	ilura	reso	(m	nm)
	Operação	PMTA	L	Tipo	Ø	Tipo	Ø	Int.	Ext.	kg	Ø	Alt.
OL 265	14	14	265							85	500	1.640
OL 475	14	14	475					τč	4/10	141	600	1.870
OL 05	10	11	500		2"		2"	ර 2	PB 4	255	810	1.420
OL 05	14	14	500						ιζ	200	010	1.420
OL 10	10	11	1.000	ML - BSP		ML - BSP		Munsell	2	326	760	2.770
OL 10	14	14	1.000	50.		50.		Σ	Munsell	417	700	2.770
OL 15	10	11	1.500					8	Mu	579	940	2.616
OL 15	14	14	1.500		3"		3"	Branco	<u> </u>	665	940	2.010
OL 20	10	11	2.000		3		3	Θ	Azul	689	940	3.346
OL 20	14	14	2.000							806	940	3.340

Separador água/óleo

Despejar condensados com óleo e/ou hidrocarbonto em sistemas de esgoto é ilegal e prejudicial ao meio ambiente. Os nossos inovadores separadores água/óleo Chicago Pneumatic são uma solução simples e ecológica para este problema. A separação de óleo e água através de um sistema de filtração em cascata de vários estágios resulta em água enxaguada que pode ser descarregada no sistema de esgoto e uma quantidade limitada de óleo a ser descartado em um centro especializado.

Descarte e tratamento de condensado mais limpo e responsável:

Todo compressor gera condensado.

Em compressores lubrificados a óleo, o condensado é constituído por uma emulsão óleo-água, que deve ser tratado para evitar que o óleo entre no sistema de esgoto. O novo CPP 15-3125 dá conta desse trabalho de forma segura e eficaz. Oferece uma separação e descarte de óleo mais completos, é muito mais fácil de usar e menos confuso para manutenção do que os separadores óleo-água tradicionais.

CPP 15-3125: Fácil manuseio e melhor filtragem

Os cartuchos de baixa manutenção e de manuseio simplificado do novo CPP 15-3125 elimina o incômodo do tratamento de condensado, além de oferecer uma filtragem mais completa. Um tratamento em duas etapas que garante uma filtração melhorada, separando também resíduos de emulsões estáveis, ou seja, uma mistura óleo-água que não se separou naturalmente. Como resultado, suas águas residuais atenderão até mesmo às mais difíceis normas ambientais.

Quais vantagens o CPP 15-3125 traz?

Operação simplificada

Cartuchos inovadores transformam a separação óleo/água simples e limpa

Baixa manutenção

Intervalo de manutenção apenas após 4.000 horas trabalhadas

Alta pureza das águas residuais

A água residual atinge alta pureza com teor de óleo tão baixo quanto 5 ppm na saída

Filtração melhorada para um ambiente mais limpo

Ainda remove o óleo de emulsões estáveis

Elevando o nível de separação óleo-água

Filtragem de dois estágios inovadora e eficaz

Primeiro, o polipropileno remove o óleo, depois o carvão ativado/argila emulsões estáveis. Essa filtragem mais completa garante que suas águas residuais atendam até mesmo os mais rígidos padrões de pureza e contribui para uma produção limpa.

Cartuchos de manuseio simples

O tratamento de condensado usando separadores óleo-água convencionais pode ser um processo árduo e confuso. Os cartuchos fáceis de usar do CPP 15-3125 tornam esse processo muito mais simples e limpo.

Especificações técnicas

	Ċ	oacidade m Clima amen secador e f	0	Ċ	oacidade m Ilima amen secador e f	0	Dimensões					
MODELO							Α	В	С	Peso	Cone	xões
	I/s	m³/hr	cfm	l/s	m³/hr	cfm	mm	mm	mm	kg	Entrada condensado	Saída água
CPP 15	15	54	32	12	43	25	250 (10)	147 (6)	216 (9)	1.2 (2.6)	6mm (1/4")	10mm (3/8")
CPP 31	31	113	66	25	90	53	250 (10)	147 (6)	216 (9)	1.5 (3.4)	6mm (1/4")	10mm (3/8")
CPP 63	63	225	132	50	180	106	390 (15)	278 (11)	428 (17)	5.8 (12.7)	2 x 1/2"	1/2"
CPP 106	106	383	225	85	306	180	397 (16)	286 (11)	507 (20)	7.7 (16.9)	2 x 1/2"	1/2"
CPP 213	213	765	450	170	612	360	490 (19)	396 (16)	576 (23)	13.1 (28.9)	2 x 3/4"	3/4"
CPP 375	375	1350	795	300	1080	636	583 (23)	446 (18)	721 (28)	25.3 (55.7)	2 x 3/4"	3/4"
CPP 781	781	2813	1655	625	2250	1324	692 (27)	568 (22)	970 (38)	45.1 (99.4)	2 x 3/4"	3/4"
CPP 1563	1563	5625	3311	1250	4499	2648	975 (38)	782 (31)	1000 (39)	86 (189.5)	2 x 3/4"	3/4"
CPP 3125	3125	11250	6621	2500	8998	5296	975 (38)	1600 (63)	1000 (39)	171.9 (379.1)	2 x 3/4"	3/4"

Fatores de correção:

Umidade relativa	%	0.5	0.6	0.7	0.8	0.9		
Officade relativa	Fator de correção	1.10	1.00	0.85	0.74	0.66		
Tamparatura ambianta	°C	15	20	25	30	35	40	
Temperatura ambiente	Fator de correção	1.33	1.17	1.00	0.76	0.50	0.30	
Tempo diário de operação	hrs	12	14	16	18	20	22	24
rempo diano de operação	Fator de correção	1	0.86	0.75	0.67	0.6	0.55	0.5

Condiões de referência:

Umidade relativa do ar: 60%
Temperatura do ar entrando: 25°C
Tempo diário de operação: 12 hrs
Pressão de trabalho efetiva: 7 bar (102 psi)

Opcionais disponíveis

- Indicador de fluxo
- Coletor para múltiplas entradas de condensado
- Kit de instalação na parede
- Recipiente de derramamento

SECADORES

Secadores por refrigeração

Durante o processo de compressão, a água passa de vapor para líquido e pode ter efeitos corrosivos sobre metais, além de retirar os lubrificantes que protegem as ferramentas e outros dispositivos pneumáticos. Os secadores de ar por refrigeração utilizam o gás refrigerante em seu processo a fim de arrefecer o ar comprimido e assim condensar a água do sistema que é removida de forma eficiente, chegando a um ponto de orvalho de até 3°C.

Benefícios que os secadores CP garantem

Os secadores por refrigeração CPX garantem secagem e qualidade de ar comprimido que prolonga a vida útil de seus equipamentos e garante uma qualidade de produção superior. Vapor é eliminado, evitando a corrosão em seu sistema de ar comprimido e ferramentas. Em suma, isso reduz sua manutenção custos e melhora seu processo de produção geral

para total tranquilidade.

Vantagens

Funciona bem sob qualquer tipo de clima

fabricado e testado para funcionar em climas severos

Alta qualidade

Componentes de alta qualidade para um funcionamento confiável

Fácil operação

através de um painel de controle de simples visualização

Estabilidade

Baixas quedas de pressão que garantem menores custos de energia

Pensamos no meio ambiente

A Chicago Pneumatic utiliza sempre gases HFCs (hidrofluorocarbonetos) que não contém cloro. Esses gases refrigerantes não são prejudiciais ao meio ambiente e evitam a degradação da camada de ozônio.

CP COOL 10 - 270

CP COOL

Altamente eficiente em combater a umidade gerada pelo processo de compressão de ar, o CP Cool é compacto e confiável:

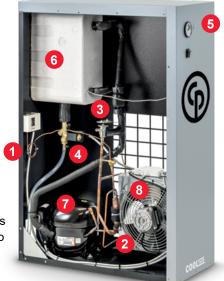
O CP Cool é extremamente compacto, podendo ser instalado em praticamente qualquer lugar da sua sala de operação. O seu tamanho compacto também facilita no seu transporte.

Possui um baixo de custo de operação, graças ao seus componentes de alta qualidade.

Compacto & Eficiente

A Linha
COOL oferece
componentes
confiáveis em um
layout vertical
simples:

- Simples de instalar e fácil de operar
- Fácil acesso aos componentes para um rápido serviço, gerando baixos custos de manutenção
- Sistema de refrigeração eficiente
- Transporte flexível
- Sustentável
- Ponto de orvalho estável



Principais benefícios

- Remova poluição da água da sua rede
- O Secador por refrigeração é uma tecnologia simples e de baixa manutenção
- Extremamente fácil de instalar
- Equipamento muito compacto que cabe em um espaço mínimo
- Baixa necessidade de manutenção
- Compatível com qualquer tecnologia de compressor
- · Baixo consumo de energia
- Verifique a qualidade do ar com o indicador de ponto de orvalho

Componentes

- **1. Tubo capilar** para reduzir consideravelmente a pressão e a temperatura do refrigerante, melhorando o processo de resfriamento.
- **2. Filtro refrigerante** para proteger o capilar de possíveis partículas sujas.
- 3. Válvula by-pass de gás quente:
 - Injeta gás quente da descarga do compressor na sucção/separador de líquido
 - Mantém a capacidade de refrigeração em todas as condições de carga
 - Mantém a pressão constante no evaporador, evitando o congelamento
- **4. O temporizador de drenagem** garante uma drenagem adequada do condensado
- **5. Painel de controle:** Indicador PDP (zona verde) & e chave liga/desliga
- 6. Ar/Ar e Ar/Refrigerante trocador de calor com alta troca térmica e baixas perdas de carga. Separador de água integrado permite uma separação de água-ar altamente eficiente
- **7. Compressor de refrigeração** acionado por um motor elétrico, resfriado com fluido refrigerante e protegido contra sobrecarga térmica
- **8. Condensador refrigerante** com grande superfície de troca para alta troca térmica.

Modelo	CAPACIDADE DE	TRATAMENTO	PRESSÃO MÁXIMA EFETIVA CONEXÃO DE SAÍDA		PDP	ESPEC. GAS	PESO	DIMENSÃO (mm)				
	m³/h	PCM	bar	BSP			kg	С	L	A		
COOL 10	21,1	12					19					
COOL 20	36	21,2					19					
COOL 30	51	30	16	1/2		R134a	19	233	550	561		
COOL 40	72	42,4					20	233		301		
COOL 60	109,4	64,4	10				25					
COOL 80	129,1	76		3/4	+5 °C		27					
COOL 100	180	106		1"	+5.0		30	233	559	561		
COOL 125	216	127		1			52					
COOL 150	246	145					57					
COOL 180	313	184	13	1" 1/2			59	310	706	994		
COOL 225	391	230	13	1 1/2		R410A	80					
COOL 270	462	272					80					

Condições de referência

• Pressão de trabalho: 7 bar (100 psi)

• Temperatira de trabalho: 35 °C

• Sala de trabalho: 25 °C

• Pressão do ponto de orvalho: 7 °C (+/-1 °C)

• Também disponível na versão 60Hz

Condições limite

• Pressão de trabalho:

16 bar COOL 10-125 / 13 bar COOL 150-270

• Temperatura de trabalho: 50 °C

 \bullet Mín e máx temperatura na sala: +5 °C; +40 °C

A COOL

Fatores de correção para condições diferentes do projeto K = A x B x C

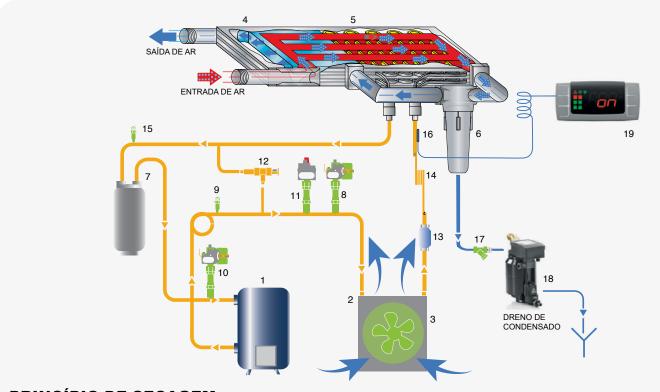
Temperatura	°C	25 30 35 40					- emper	atura	°C	30	35	40	45	50
da sala	Α	1,00	0,92	0,84	0,80		de trabalho			1,24	1,00	0,82	0,69	0,54
Pressão de	bar	5	6	7	8	9	10	11	12	13	14	15	16	
trabalho	С	0,90	0,96	1,00	1,03	1,06	1,08	1,10	1,12	1,13	1,15	1,16	1,17	

CPX 10 - 4200

CPX

Ar comprimido seco garante o bom funcionamento do sistema pneumático, impede fugas e quedas de pressão devido a corrosão ocasionada pela condensação que se forma na tubulação, permitindo menores custos de manutenção. Os secadores de ar comprimido por refrigeração da linha CPX da Chicago Pneumatic são compactos e eficientes, garantindo ar de qualidade e livre de condensados.

Atende a norma ISO-8573-1, classe 4 (ponto de orvalho +3°C.

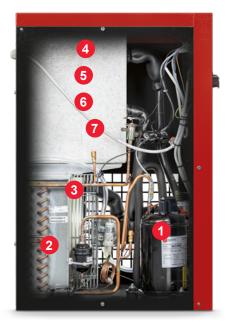


Gases refrigerantes que são amigos do meio ambiente

Um dos principais objetivos do projeto do secador CPX foi entregar um produto que oferecesse desempenho, confiabilidade e segurança com o menor impacto ambiental possível.

- Ecologicamente correto graças ao uso de gás R513A, R410A e R452A
- Sem impacto na camada de ozônio.
- Benefícios do R410A: Baixo potencial de aquecimento global(GWP)
 - Economia de energia com compressor refrigerante (20 to 30% mais eficiente do que o convencional pistão)

PRINCÍPIO DE SECAGEM DIAGRAMA PARA O CPX 850


- Fluido refrigerante compressor
- 2. Condensador
- 3. Ventilador acionado por motor
- 4. Trocador de ar quente/ar
- 5. Evaporador de ar e gás refrigerante
- 6. Separador de condensado
- 7. Separador de fluído refrigerante
- 8. Disjuntor de pressão máxima
- 9. Válvula de serviço
- 10. Disjuntor de pressão

mínima

- 11. Disjuntor do ventilador
- 12. Válvula hot gas bypass
- 13. Filtro de fluido refrigerante
- 14. Tubo capilar
- 15. Válvula de serviço
- 16. Termômetro de ponto

de orvalho

- 17. Coletor de impureza
- 18. Descarga automática de condensado
- 19. Indicador de PDP

A escolha certa para alta confiabilidade

- 1. Motocompressor compressor refrigerante movido por um motor elétrico, resfriado por um fluido e protegido contra sobrecarga térmica.
- 2. Condensador refrigerante resfriado a ar e com uma grande troca de temperatura externa.
- **3. Ventilador elétrico** para condensar o fluxo de ar.
- **4. Trocador de ar** com uma alta performance termal e baixa queda de pressão.

- Evaporador de ar e gás refrigerante com uma alta performance termal e baixa queda de pressão.
- **6. Separador de condensado** para remoção eficiente de condensado.
- **7. Válvula hot gas bypass** controla a capacidade refrigerante durante o período de funcionamento.
- 8. Descarga automática de condensado que economiza energia e se auto-ajusta, permitindo apenas a descarga de umidade e evita a descarga de resíduos de ar comprimido valiosos.

Opcionais do CPX

Indicador de PDP

A operação do CPX é monitorada por um controlador eletrônico que indica informações como:

Detalhes técnicos:

- Status do secador por refrigeração
- Status do ventilador
- Indicação de pressão

Indica:

- Ponto de orvalho alto ou baixo
- Falha na sonda do ventilador (CPX 40-270)
- Lembrete de serviço

Contato

CPX 80-270

- Alarme de PDP
- Alta temperatura
- Falha na sonda do ventilador

CPX 350-3000

- Alarme geral:
- Alarme de PDP alto ou baixo
- Alta temperatura
- Falhas de sondagem
- Interruptor de alta pressão
- Falha elétrica
- Alarme de dreno

Descarga inteligente para drenagem

A gama completa de secadores por refrigeração está equipada com um dreno de condensado controlado por nível, uma gama que utiliza sensores eletrónicos para descarregar apenas condensado e sem desperdício de ar comprimido.

Benefícios

- Sem perda de ar comprimido
- Economia de energia
- Baixo nível de ruído

Opcionais disponíveis

para CPX 10-60

Suporte de filtro e bypass*

O bypass opcional permite que o sistema opere utilizando os filtros apenas durante a manutenção ou mau funcionamento do secador, evitando assim qualquer parada.

Suporte para filtro*

Esta opção permite a instalação de dois filtros na parte traseira do secador, reduzindo as dimensões totais e os custos de instalação.

*Filtros não vêm inclusos

Especificações técnicas

MODELO			ALIM. ELÉTRICA	PRESSÃO EFETIVA MÁXIMA	CONEXÃO DE SAÍDA	PDP	ESPEC. GAS	PESO	DIMENSÃO (mm)				
	m³/h	pcm	V / Ø / Hz	bar	BSP			kg	С	L	А		
CPX 10	22	13						19					
CPX 20	36	21,6			3/4 M								
CPX 30	50	30		16				20	350	500	450		
CPX 40	72	43					R513A	25					
CPX 60	108	65						27					
CPX 80	141	84	220 / 1 / 60		1" F			44	370	500	764		
CPX 100	180	108											
CPX 125	216	129						53					
CPX 150	246	147						60	460	560	789		
CPX 180	312	187			1" 1/2 F	+3 °C		65					
CPX 225	390	234	380/3/60 440/3/60					80	580	590	899		
CPX 270	462	277											
CPX 350	600	359			2" F			128					
CPX 425	720	431	380 / 3 / 60 440 / 3 / 60				D440A	146	735	898	962		
CPX 530	900	539	380 / 3 / 60 440 / 3 / 60		2" 1/2 F		R410A	158	. 00		002		
CPX 700	1080	647	380 / 3 / 60 440 / 3 / 60		2 1/21			165					
CPX 850	1440	863	380 / 3 / 60 440 / 3 / 60	14				358 325					
CPX 1000	1800	1078	380 / 3 / 60 440 / 3 / 60		3" M			368 335	1020	1082	1535		
CPX 1200	2100	1258	380 / 3 / 60 440 / 3 / 60					383 350	.020	.002	.000		
CPX 1500	2700	1617	380 / 3 / 60 440 / 3 / 60			+4 °C		380					
CPX 1700	3000	1797	380 / 3 / 60 440 / 3 / 60			14 0		559 550					
CPX 2500	4200	2516	380 / 3 / 60 440 / 3 / 60		DN 1		R452A	609 600	1020	2099	1535		
CPX 3000	5040	3019	380 / 3 / 60 440 / 3 / 60					650					
CPX 3500	5940	3559	380/3/60										
CPX 4200	7200	4313	440/3/60										

NOTAS:

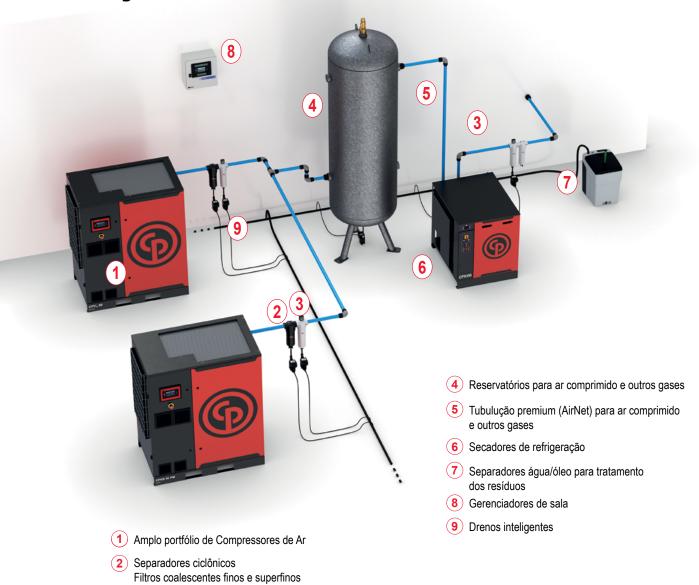
- Condições de referência:
 Pressão de trabalho: 7 bar (100 psi)

- Pressao de trabalho : 35°C
 Temperatura de trabalho : 35°C
 Temperatura da sala: 25°C
 Pressão do ponto de orvalho: +4°C +/-1
 Disponível em diferentes voltagens e frequências

- Condições de limite operacional:
 Max. pressão de trabalho:
 16 bar (232 psi) CPX 10-60 14 bar (203 psi) CPX 80-3000
- Max. temperatura de entrada: 55°C (60°C. for CPX 350-3000)
- Temperatura ambiente mín. e máx. : +5°C; 45°C (+5°C; 46°C para o CPX 350-3000)

Opcional para o CPX (10-60):

- Bypass + suporte para filtro
- Suporte para filtro


Fatores de correção para condições diferentes do projeto K = A x B x C

T	°C	25	30	35	40	43	46				т	4	°C	25	30	35	40	45	50	55	60	
Temperatura da sala	Α	1,00	0,92	0,84	0,80	0,79	/ (CPX 10-270)				oeratur trabalh		1,24	1,00	0,82	0,69	0,54	0,58	0,45	/	(CPX 10-270)
ua sala	A	1,00	1,00 0,91 0,81 0,72 / 0,62 (CPX 350-3000)	liabali	ь	1,00	1,00	0,81	0,72	0,62	0,58	0,49	0,42	(CPX 350-3000)								
Pressão de	bar	5	6	7	8	9	10	11	12	13	14	15	16							0,	novo vale	or da vazão pode ser obtido
trabalho	_	0,90	0,96	1,00	1,0	3 1,0	6 1,08	3 1,10	1,12	1,13	1,15	1,16	1,17	(CPX	10-270	0)		dividindo-se a vazão atual ou real				
	С	0,90	0,97	1,00	1,0	3 1,0	5 1,07	1,09	1,11	1,12	1,15			(CPX	350-3	000)		de correção referente às condições o				

CHICAGO PNEUMATIC

Conheça todas as soluções CP

3 Filtros de partículas finos e superfinos Filtros de carvão ativado

Na Chicago Pneumatic temos paixão pelo desempenho e parcerias duradouras. Desde 1901, estamos comprometidos com a confiabilidade baseada em tecnologia e confiança.

Para maiores informações, por favor visite nosso site ou entre em contato com um parceiro CP:

Use apenas peças originais. Qualquer dano ou malfuncionamento causado pelo uso de peças paralelas não é coberto pela garantia do produto.